

Test Case

Test Case

Test Case: Details

Station	Speed Limit
A	80 km/h
В	80 km/h
C	80 km/h
D	80 km/h
E	80 km/h
c_2	75 km/h
G	80 km/h
c_3	80 km/h
h	70 km/h
I	80 km/h
L	70 km/h
M	80 km/h
c_4	80 km/h
N	80 km/h
c_5	

Export Import Dupl. Del. Add

Adhesion [%] bad:

Loss function:

3.30

1.06

✓

~

Diagram Color:

good: 150

Edit

80 normal: 125

Test Case

100 [km/h]

Open Track Api

80 km/h 50 km/h

Speed limit range

Maximum time to engine off (before breaking)

Minimun time to engine off (to reach the following station)

Results

1650 450000 537500 625000 712500

Comparison

Performance 100%									
	Use	r OT	moga-2						
Point	Energy	Time	Energy	Time	ΔTime %	Energy	Time	ΔEner gy %	
					/0			gy /0	
Α	762028	1713	759631	1700	0.76	655783	1713	13.94	
В	626552	1732	624460	1719	0.75	572404	1731	8.64	
С	570388	1748	568163	1734	0.80	534674	1749	6.26	

Performance 90%									
	Use	r OT	moga-2						
Point	Energy	Time	Energy	Time	ΔTime %	Energy	Time	ΔEner gy %	
D	715276	1746	714079	1740	0.34	648951	1746	9.27	
Е	607052	1769	605612	1756	0.73	566103	1769	6.75	
F	554677	1783	552414	1773	0.56	537253	1783	3.14	

Open Track Api

	Performar	nces 100%	Example Solution Moga-2			2
STATION	Time		Time		Margins	ΔTime %
Α		01:00:00		01:00:00		
В	01:01:22	01:02:22	01:01:27	01:02:27	00:00:05	5.81%
С	01:02:54	01:03:54	01:03:00	01:04:00	00:00:01	1.16%
D	01:05:09	01:06:09	01:05:28	01:06:28	00:00:13	15.12%
E	01:07:08	01:08:08	01:07:43	01:08:43	00:00:16	18.60%
C2	01:09:00	01:10:00	01:09:40	01:10:40	00:00:05	5.81%
F	01:10:44	01:11:44	01:11:26	01:12:26	00:00:02	2.33%
G	01:13:03	01:14:03	01:13:55	01:14:55	00:00:10	11.63%
С3	01:15:00	01:16:00	01:15:54	01:16:54	00:00:02	2.33%
Н	01:17:04	01:18:04	01:18:00	01:19:00	00:00:02	2.33%
ı	01:19:05	01:20:05	01:20:08	01:21:08	00:00:07	8.14%
L	01:20:58	01:21:58	01:22:09	01:23:09	00:00:08	9.30%
M	01:23:12	01:24:12	01:24:29	01:25:29	00:00:06	6.98%
C4	01:25:00	01:26:00	01:26:24	01:27:24	00:00:07	8.14%
N	01:26:38	01:27:38	01:28:04	01:29:04	00:00:02	2.33%
C 5	01:27:54		01:29:20		00:00:00	0.00%
TOTAL	00:27:54		00:29:20		00:01:26	

MOGA-II Results

NSGA-II Results

MOGA-2 and NSGA-2 Comparison

Regeneration

File *.tsvP

```
public void mecPower() throws IOException {
                                                               Mech. Power
    for (int a = 0; a < 25; a++)
        if (this.tsyp.readLine() == null)
            System.out.println("File bad format!!!");
    String lastline = null;
    while ((line=tsvp.readLine())!= null) {
        String[] dati = line.split("\\t", 8);
        calcMacPower (valueOf (dati[7]
public void calcMacPower (double value) {
                                          public wid mecPower() throws IOException {
    consumi = consumi + value;
                                              for (int a = 0; a < 25; a++)
                                                  if (this tsyp.readLine() == null)
                                                       System.out.println("File bad format!!!");
                                              String lastline = null;
                                              while ((line=tsyp.readLine())!= null) {
            Power In
                                                   String[] dati = line.split(")\t", 8);
                                                  calcMacPower (valueOf (dati [6]
                                          public void calcMacPower(double value) {
                                              consumi = consumi + value;
```


Results

Results

Conclusions

- API makes it possible to create a connection to a third party optimization tool
- This may allow to use OpenTrack as micro-simulation engine and increase its potentials
 - ✓ OpenTrack model with API license
 - ✓ Identify exactly Input and Output variables and what is fixed
 - ✓ Optimization tool license
- Increase the number of simulated scenarios (thousands instead of few)
- Increase the quality of results
- > First tests are promising

Further developments

- Extend the application to real life problems by using existing API commands
- > Suggest the development of specific new commands within API

- Analyze the performances of existing optimization algorithms for railway specific applications
- Development of possible improved algorithms

